Serveur d'exploration sur la maladie de Parkinson

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mitochondrial dynamicsfusion, fission, movement, and mitophagyin neurodegenerative diseases

Identifieur interne : 001C08 ( Main/Corpus ); précédent : 001C07; suivant : 001C09

Mitochondrial dynamicsfusion, fission, movement, and mitophagyin neurodegenerative diseases

Auteurs : Hsiuchen Chen ; David C. Chan

Source :

RBID : ISTEX:27DEB1ECF24562C0EB8EE1BCB26F3E6F80C37F0E

Abstract

Neurons are metabolically active cells with high energy demands at locations distant from the cell body. As a result, these cells are particularly dependent on mitochondrial function, as reflected by the observation that diseases of mitochondrial dysfunction often have a neurodegenerative component. Recent discoveries have highlighted that neurons are reliant particularly on the dynamic properties of mitochondria. Mitochondria are dynamic organelles by several criteria. They engage in repeated cycles of fusion and fission, which serve to intermix the lipids and contents of a population of mitochondria. In addition, mitochondria are actively recruited to subcellular sites, such as the axonal and dendritic processes of neurons. Finally, the quality of a mitochondrial population is maintained through mitophagy, a form of autophagy in which defective mitochondria are selectively degraded. We review the general features of mitochondrial dynamics, incorporating recent findings on mitochondrial fusion, fission, transport and mitophagy. Defects in these key features are associated with neurodegenerative disease. Charcot-Marie-Tooth type 2A, a peripheral neuropathy, and dominant optic atrophy, an inherited optic neuropathy, result from a primary deficiency of mitochondrial fusion. Moreover, several major neurodegenerative diseasesincluding Parkinson's, Alzheimer's and Huntington's diseaseinvolve disruption of mitochondrial dynamics. Remarkably, in several disease models, the manipulation of mitochondrial fusion or fission can partially rescue disease phenotypes. We review how mitochondrial dynamics is altered in these neurodegenerative diseases and discuss the reciprocal interactions between mitochondrial fusion, fission, transport and mitophagy.

Url:
DOI: 10.1093/hmg/ddp326

Links to Exploration step

ISTEX:27DEB1ECF24562C0EB8EE1BCB26F3E6F80C37F0E

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Mitochondrial dynamicsfusion, fission, movement, and mitophagyin neurodegenerative diseases</title>
<author>
<name sortKey="Chen, Hsiuchen" sort="Chen, Hsiuchen" uniqKey="Chen H" first="Hsiuchen" last="Chen">Hsiuchen Chen</name>
<affiliation>
<mods:affiliation>Division of Biology and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chan, David C" sort="Chan, David C" uniqKey="Chan D" first="David C." last="Chan">David C. Chan</name>
<affiliation>
<mods:affiliation>E-mail: dchan@caltech.edu</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:27DEB1ECF24562C0EB8EE1BCB26F3E6F80C37F0E</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1093/hmg/ddp326</idno>
<idno type="url">https://api.istex.fr/document/27DEB1ECF24562C0EB8EE1BCB26F3E6F80C37F0E/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">001C08</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Mitochondrial dynamicsfusion, fission, movement, and mitophagyin neurodegenerative diseases</title>
<author>
<name sortKey="Chen, Hsiuchen" sort="Chen, Hsiuchen" uniqKey="Chen H" first="Hsiuchen" last="Chen">Hsiuchen Chen</name>
<affiliation>
<mods:affiliation>Division of Biology and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chan, David C" sort="Chan, David C" uniqKey="Chan D" first="David C." last="Chan">David C. Chan</name>
<affiliation>
<mods:affiliation>E-mail: dchan@caltech.edu</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Human Molecular Genetics</title>
<idno type="ISSN">0964-6906</idno>
<idno type="eISSN">1460-2083</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date type="published" when="2009-10-15">2009-10-15</date>
<biblScope unit="volume">18</biblScope>
<biblScope unit="issue">R2</biblScope>
<biblScope unit="page" from="R169">R169</biblScope>
<biblScope unit="page" to="R176">R176</biblScope>
</imprint>
<idno type="ISSN">0964-6906</idno>
</series>
<idno type="istex">27DEB1ECF24562C0EB8EE1BCB26F3E6F80C37F0E</idno>
<idno type="DOI">10.1093/hmg/ddp326</idno>
<idno type="ArticleID">ddp326</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0964-6906</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Neurons are metabolically active cells with high energy demands at locations distant from the cell body. As a result, these cells are particularly dependent on mitochondrial function, as reflected by the observation that diseases of mitochondrial dysfunction often have a neurodegenerative component. Recent discoveries have highlighted that neurons are reliant particularly on the dynamic properties of mitochondria. Mitochondria are dynamic organelles by several criteria. They engage in repeated cycles of fusion and fission, which serve to intermix the lipids and contents of a population of mitochondria. In addition, mitochondria are actively recruited to subcellular sites, such as the axonal and dendritic processes of neurons. Finally, the quality of a mitochondrial population is maintained through mitophagy, a form of autophagy in which defective mitochondria are selectively degraded. We review the general features of mitochondrial dynamics, incorporating recent findings on mitochondrial fusion, fission, transport and mitophagy. Defects in these key features are associated with neurodegenerative disease. Charcot-Marie-Tooth type 2A, a peripheral neuropathy, and dominant optic atrophy, an inherited optic neuropathy, result from a primary deficiency of mitochondrial fusion. Moreover, several major neurodegenerative diseasesincluding Parkinson's, Alzheimer's and Huntington's diseaseinvolve disruption of mitochondrial dynamics. Remarkably, in several disease models, the manipulation of mitochondrial fusion or fission can partially rescue disease phenotypes. We review how mitochondrial dynamics is altered in these neurodegenerative diseases and discuss the reciprocal interactions between mitochondrial fusion, fission, transport and mitophagy.</div>
</front>
</TEI>
<istex>
<corpusName>oup</corpusName>
<author>
<json:item>
<name>Hsiuchen Chen</name>
<affiliations>
<json:string>Division of Biology and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>David C. Chan</name>
<affiliations>
<json:string>E-mail: dchan@caltech.edu</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>REVIEWS</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<abstract>Neurons are metabolically active cells with high energy demands at locations distant from the cell body. As a result, these cells are particularly dependent on mitochondrial function, as reflected by the observation that diseases of mitochondrial dysfunction often have a neurodegenerative component. Recent discoveries have highlighted that neurons are reliant particularly on the dynamic properties of mitochondria. Mitochondria are dynamic organelles by several criteria. They engage in repeated cycles of fusion and fission, which serve to intermix the lipids and contents of a population of mitochondria. In addition, mitochondria are actively recruited to subcellular sites, such as the axonal and dendritic processes of neurons. Finally, the quality of a mitochondrial population is maintained through mitophagy, a form of autophagy in which defective mitochondria are selectively degraded. We review the general features of mitochondrial dynamics, incorporating recent findings on mitochondrial fusion, fission, transport and mitophagy. Defects in these key features are associated with neurodegenerative disease. Charcot-Marie-Tooth type 2A, a peripheral neuropathy, and dominant optic atrophy, an inherited optic neuropathy, result from a primary deficiency of mitochondrial fusion. Moreover, several major neurodegenerative diseasesincluding Parkinson's, Alzheimer's and Huntington's diseaseinvolve disruption of mitochondrial dynamics. Remarkably, in several disease models, the manipulation of mitochondrial fusion or fission can partially rescue disease phenotypes. We review how mitochondrial dynamics is altered in these neurodegenerative diseases and discuss the reciprocal interactions between mitochondrial fusion, fission, transport and mitophagy.</abstract>
<qualityIndicators>
<score>8.76</score>
<pdfVersion>1.5</pdfVersion>
<pdfPageSize>612 x 797.953 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<keywordCount>1</keywordCount>
<abstractCharCount>1767</abstractCharCount>
<pdfWordCount>6169</pdfWordCount>
<pdfCharCount>41749</pdfCharCount>
<pdfPageCount>8</pdfPageCount>
<abstractWordCount>230</abstractWordCount>
</qualityIndicators>
<title>Mitochondrial dynamicsfusion, fission, movement, and mitophagyin neurodegenerative diseases</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>18</volume>
<pages>
<last>R176</last>
<first>R169</first>
</pages>
<issn>
<json:string>0964-6906</json:string>
</issn>
<issue>R2</issue>
<genre></genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1460-2083</json:string>
</eissn>
<title>Human Molecular Genetics</title>
</host>
<categories>
<wos>
<json:string>BIOCHEMISTRY & MOLECULAR BIOLOGY</json:string>
<json:string>GENETICS & HEREDITY</json:string>
</wos>
</categories>
<publicationDate>2009</publicationDate>
<copyrightDate>2009</copyrightDate>
<doi>
<json:string>10.1093/hmg/ddp326</json:string>
</doi>
<id>27DEB1ECF24562C0EB8EE1BCB26F3E6F80C37F0E</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/27DEB1ECF24562C0EB8EE1BCB26F3E6F80C37F0E/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/27DEB1ECF24562C0EB8EE1BCB26F3E6F80C37F0E/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/27DEB1ECF24562C0EB8EE1BCB26F3E6F80C37F0E/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Mitochondrial dynamicsfusion, fission, movement, and mitophagyin neurodegenerative diseases</title>
<respStmt xml:id="ISTEX-API" resp="Références bibliographiques récupérées via GROBID" name="ISTEX-API (INIST-CNRS)"></respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Oxford University Press</publisher>
<availability>
<p>OUP</p>
</availability>
<date>2009</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Mitochondrial dynamicsfusion, fission, movement, and mitophagyin neurodegenerative diseases</title>
<author>
<persName>
<forename type="first">Hsiuchen</forename>
<surname>Chen</surname>
</persName>
<affiliation>Division of Biology and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">David C.</forename>
<surname>Chan</surname>
</persName>
<email>dchan@caltech.edu</email>
</author>
</analytic>
<monogr>
<title level="j">Human Molecular Genetics</title>
<idno type="pISSN">0964-6906</idno>
<idno type="eISSN">1460-2083</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date type="published" when="2009-10-15"></date>
<biblScope unit="volume">18</biblScope>
<biblScope unit="issue">R2</biblScope>
<biblScope unit="page" from="R169">R169</biblScope>
<biblScope unit="page" to="R176">R176</biblScope>
</imprint>
</monogr>
<idno type="istex">27DEB1ECF24562C0EB8EE1BCB26F3E6F80C37F0E</idno>
<idno type="DOI">10.1093/hmg/ddp326</idno>
<idno type="ArticleID">ddp326</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2009</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Neurons are metabolically active cells with high energy demands at locations distant from the cell body. As a result, these cells are particularly dependent on mitochondrial function, as reflected by the observation that diseases of mitochondrial dysfunction often have a neurodegenerative component. Recent discoveries have highlighted that neurons are reliant particularly on the dynamic properties of mitochondria. Mitochondria are dynamic organelles by several criteria. They engage in repeated cycles of fusion and fission, which serve to intermix the lipids and contents of a population of mitochondria. In addition, mitochondria are actively recruited to subcellular sites, such as the axonal and dendritic processes of neurons. Finally, the quality of a mitochondrial population is maintained through mitophagy, a form of autophagy in which defective mitochondria are selectively degraded. We review the general features of mitochondrial dynamics, incorporating recent findings on mitochondrial fusion, fission, transport and mitophagy. Defects in these key features are associated with neurodegenerative disease. Charcot-Marie-Tooth type 2A, a peripheral neuropathy, and dominant optic atrophy, an inherited optic neuropathy, result from a primary deficiency of mitochondrial fusion. Moreover, several major neurodegenerative diseasesincluding Parkinson's, Alzheimer's and Huntington's diseaseinvolve disruption of mitochondrial dynamics. Remarkably, in several disease models, the manipulation of mitochondrial fusion or fission can partially rescue disease phenotypes. We review how mitochondrial dynamics is altered in these neurodegenerative diseases and discuss the reciprocal interactions between mitochondrial fusion, fission, transport and mitophagy.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="2009-10-15">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2016-3-15">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/27DEB1ECF24562C0EB8EE1BCB26F3E6F80C37F0E/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus oup" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article">
<front>
<journal-meta>
<journal-id journal-id-type="publisher-id">hmg</journal-id>
<journal-id journal-id-type="hwp">hmg</journal-id>
<journal-title>Human Molecular Genetics</journal-title>
<issn pub-type="ppub">0964-6906</issn>
<issn pub-type="epub">1460-2083</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1093/hmg/ddp326</article-id>
<article-id pub-id-type="publisher-id">ddp326</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>REVIEWS</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>Hsiuchen</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chan</surname>
<given-names>David C.</given-names>
</name>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
</contrib-group>
<aff>
<addr-line>Division of Biology and Howard Hughes Medical Institute</addr-line>
,
<institution>California Institute of Technology</institution>
,
<addr-line>Pasadena, CA 91125</addr-line>
,
<country>USA</country>
</aff>
<author-notes>
<corresp id="cor1">
<label>*</label>
To whom correspondence should be addressed at:
<addr-line>Howard Hughes Medical Institute</addr-line>
,
<institution>California Institute of Technology</institution>
,
<addr-line>1200 E. California Blvd., MC114-96, Pasadena, CA 91125</addr-line>
,
<country>USA</country>
. Tel:
<phone>+1 6263952670</phone>
; Fax:
<fax>+1 6263958826</fax>
; Email:
<email>dchan@caltech.edu</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<day>15</day>
<month>10</month>
<year>2009</year>
</pub-date>
<volume>18</volume>
<issue>R2</issue>
<fpage>R169</fpage>
<lpage>R176</lpage>
<history>
<date date-type="received">
<day>12</day>
<month>6</month>
<year>2009</year>
</date>
<date date-type="rev-recd">
<day>12</day>
<month>6</month>
<year>2009</year>
</date>
<date date-type="accepted">
<day>16</day>
<month>7</month>
<year>2009</year>
</date>
</history>
<copyright-statement>© 2009 The Author(s)</copyright-statement>
<copyright-year>2009</copyright-year>
<license license-type="creative-commons" xlink:href="http://creativecommons.org/licenses/by-nc/2.0/uk/">
<p>This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.</p>
</license>
<abstract>
<p>Neurons are metabolically active cells with high energy demands at locations distant from the cell body. As a result, these cells are particularly dependent on mitochondrial function, as reflected by the observation that diseases of mitochondrial dysfunction often have a neurodegenerative component. Recent discoveries have highlighted that neurons are reliant particularly on the dynamic properties of mitochondria. Mitochondria are dynamic organelles by several criteria. They engage in repeated cycles of fusion and fission, which serve to intermix the lipids and contents of a population of mitochondria. In addition, mitochondria are actively recruited to subcellular sites, such as the axonal and dendritic processes of neurons. Finally, the quality of a mitochondrial population is maintained through mitophagy, a form of autophagy in which defective mitochondria are selectively degraded. We review the general features of mitochondrial dynamics, incorporating recent findings on mitochondrial fusion, fission, transport and mitophagy. Defects in these key features are associated with neurodegenerative disease. Charcot-Marie-Tooth type 2A, a peripheral neuropathy, and dominant optic atrophy, an inherited optic neuropathy, result from a primary deficiency of mitochondrial fusion. Moreover, several major neurodegenerative diseases—including Parkinson's, Alzheimer's and Huntington's disease—involve disruption of mitochondrial dynamics. Remarkably, in several disease models, the manipulation of mitochondrial fusion or fission can partially rescue disease phenotypes. We review how mitochondrial dynamics is altered in these neurodegenerative diseases and discuss the reciprocal interactions between mitochondrial fusion, fission, transport and mitophagy.</p>
</abstract>
</article-meta>
</front>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Mitochondrial dynamicsfusion, fission, movement, and mitophagyin neurodegenerative diseases</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Mitochondrial dynamicsfusion, fission, movement, and mitophagyin neurodegenerative diseases</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hsiuchen</namePart>
<namePart type="family">Chen</namePart>
<affiliation>Division of Biology and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David C.</namePart>
<namePart type="family">Chan</namePart>
<affiliation>E-mail: dchan@caltech.edu</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article"></genre>
<originInfo>
<publisher>Oxford University Press</publisher>
<dateIssued encoding="w3cdtf">2009-10-15</dateIssued>
<copyrightDate encoding="w3cdtf">2009</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>Neurons are metabolically active cells with high energy demands at locations distant from the cell body. As a result, these cells are particularly dependent on mitochondrial function, as reflected by the observation that diseases of mitochondrial dysfunction often have a neurodegenerative component. Recent discoveries have highlighted that neurons are reliant particularly on the dynamic properties of mitochondria. Mitochondria are dynamic organelles by several criteria. They engage in repeated cycles of fusion and fission, which serve to intermix the lipids and contents of a population of mitochondria. In addition, mitochondria are actively recruited to subcellular sites, such as the axonal and dendritic processes of neurons. Finally, the quality of a mitochondrial population is maintained through mitophagy, a form of autophagy in which defective mitochondria are selectively degraded. We review the general features of mitochondrial dynamics, incorporating recent findings on mitochondrial fusion, fission, transport and mitophagy. Defects in these key features are associated with neurodegenerative disease. Charcot-Marie-Tooth type 2A, a peripheral neuropathy, and dominant optic atrophy, an inherited optic neuropathy, result from a primary deficiency of mitochondrial fusion. Moreover, several major neurodegenerative diseasesincluding Parkinson's, Alzheimer's and Huntington's diseaseinvolve disruption of mitochondrial dynamics. Remarkably, in several disease models, the manipulation of mitochondrial fusion or fission can partially rescue disease phenotypes. We review how mitochondrial dynamics is altered in these neurodegenerative diseases and discuss the reciprocal interactions between mitochondrial fusion, fission, transport and mitophagy.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Human Molecular Genetics</title>
</titleInfo>
<genre type="Journal">journal</genre>
<identifier type="ISSN">0964-6906</identifier>
<identifier type="eISSN">1460-2083</identifier>
<identifier type="PublisherID">hmg</identifier>
<identifier type="PublisherID-hwp">hmg</identifier>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>18</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>R2</number>
</detail>
<extent unit="pages">
<start>R169</start>
<end>R176</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">27DEB1ECF24562C0EB8EE1BCB26F3E6F80C37F0E</identifier>
<identifier type="DOI">10.1093/hmg/ddp326</identifier>
<identifier type="ArticleID">ddp326</identifier>
<accessCondition type="use and reproduction" contentType="copyright">2009 The Author(s)</accessCondition>
<recordInfo>
<recordContentSource>OUP</recordContentSource>
</recordInfo>
</mods>
</metadata>
<covers>
<json:item>
<original>true</original>
<mimetype>image/tiff</mimetype>
<extension>tiff</extension>
<uri>https://api.istex.fr/document/27DEB1ECF24562C0EB8EE1BCB26F3E6F80C37F0E/covers/tiff</uri>
</json:item>
<json:item>
<original>true</original>
<mimetype>text/html</mimetype>
<extension>html</extension>
<uri>https://api.istex.fr/document/27DEB1ECF24562C0EB8EE1BCB26F3E6F80C37F0E/covers/html</uri>
</json:item>
</covers>
<annexes>
<json:item>
<original>true</original>
<mimetype>image/jpeg</mimetype>
<extension>jpeg</extension>
<uri>https://api.istex.fr/document/27DEB1ECF24562C0EB8EE1BCB26F3E6F80C37F0E/annexes/jpeg</uri>
</json:item>
<json:item>
<original>true</original>
<mimetype>image/gif</mimetype>
<extension>gif</extension>
<uri>https://api.istex.fr/document/27DEB1ECF24562C0EB8EE1BCB26F3E6F80C37F0E/annexes/gif</uri>
</json:item>
</annexes>
<enrichments>
<istex:catWosTEI uri="https://api.istex.fr/document/27DEB1ECF24562C0EB8EE1BCB26F3E6F80C37F0E/enrichments/catWos">
<teiHeader>
<profileDesc>
<textClass>
<classCode scheme="WOS">BIOCHEMISTRY & MOLECULAR BIOLOGY</classCode>
<classCode scheme="WOS">GENETICS & HEREDITY</classCode>
</textClass>
</profileDesc>
</teiHeader>
</istex:catWosTEI>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C08 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001C08 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:27DEB1ECF24562C0EB8EE1BCB26F3E6F80C37F0E
   |texte=   Mitochondrial dynamicsfusion, fission, movement, and mitophagyin neurodegenerative diseases
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 18:06:51 2016. Site generation: Wed Mar 6 18:46:03 2024